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ABSTRACT

With the rise in big data and analytics, machine learning is
transforming many industries. It is being increasingly employed
to solve a wide range of complex problems, producing
autonomous systems that support human decision-making. For
the aircraft engine industry, machine learning of historical and
existing engine data could provide insights that help drive for
better engine design. This work explored the application of
machine learning to engine preliminary design. Engine core-
size prediction was chosen for the first study because of its
relative simplicity in terms of number of input variables
required (only three). Specifically, machine-learning predictive
tools were developed for turbofan engine core-size prediction,
using publicly available data of two hundred manufactured
engines and engines that were studied previously in NASA
aeronautics projects. The prediction results of these models
show that, by bringing together big data, robust machine-
learning algorithms and automation, a machine learning-based
predictive model can be an effective tool for turbofan engine
core-size prediction. The promising results of this first study
paves the way for further exploration of the use of machine
learning for aircraft engine preliminary design.
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INTRODUCTION

In today’s marketplace, rapid turnaround time of the
investigation of new design concepts or technologies can be a
powerful competitive advantage within the aircraft engine
industry. To minimize risk, technological improvements of
aircraft engine are generally made incrementally, drawing
heavily from past experiences and lessons learned. Engine
companies have generated and collected large amounts of data
over the years. The big data, from various sources such as the
database of currently manufactured engines and those of
previously completed development projects, is a valuable
resource of intelligence that can support new engine
development. With increasing computational power,
employing machine learning to mine these data can provide
valuable insights and brings high levels of efficiency to engine
preliminary design.

While the use of machine learning for aircraft engine
preventive maintenance has been studied by a number of
researchers [1 and 2], its use for engine design has not been
explored. In this work, supervised machine-learning algorithms
were employed to find patterns in the database of two hundred
manufactured engines and engines that were studied previously
in various NASA aeronautics projects. Models (or analytics
tools) to predict core sizes of axial-compressor turbofan engines
that are being considered were built. The objective was to
determine if machine learning-based predictive analytics could
be an effective tool for turbofan engine core-size prediction. To
be able to predict engine core size rapidly and accurately in the
design space exploration would facilitate engine core
architecture selection in the early stages of engine development.
In this work, engine core size (%) is defined as:

h = high-pressure compressor last-stage blade height

The important aspect of this work was the extensive use of
manufactured engine data (70% of the database). These engines
span the era from the mid-1960s to mid-2010s. The database
captures over half-a-century of engine technology
improvements and lessons-learned, which injects realism to the
predictive models.

TURBOFAN ENGINE CORE SIZE

The continuous drive for ever more efficient and quiet
aircraft has resulted in the evolution of aircraft gas turbine
engines from the earliest turbojet engines to today’s turbofan
engines with bypass ratios (BPR) of 6 to 12. The overall
pressure ratio (OPR) of gas turbines has increased over time to
improve thermodynamic efficiency. It is likely that the trend
toward higher BPR and OPR engines will continue in the
foreseeable future. Despite its benefits, the combination of
increasing BPR and OPR will shrink the core size of high-
pressure compressor (HPC), which can lead to rapid decrease
of HPC efficiency due to increased sensitivity to tip clearance
and airfoil manufacturing tolerances. A rule of thumb for the
current-state-of-the-art engine design is that the HPC last-stage
blade height should not be less than 0.5 inch [3], to avoid this
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efficiency penalty. Figure 1 shows the efficiency penalty vs.
HPC last-stage blade height of a NASA N+3 technology
reference turbofan engine [4].
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Figure 1. HPC efficiency change vs. last-stage blade height
of a NASA N+3 reference turbofan engine

MACHINE LEARNING ALGORITHMS

Machine learning is a branch of artificial intelligence that
uses statistical technique and mathematical algorithms to enable
a machine to learn from data, to analyze data patterns, and to
make decisions with minimal human intervention. In this work,
two machine-learning predictive models were developed for
engine core-size classification, i.e. to label engine core size as
acceptable, unacceptable, etc.. Three different supervised
machine-learning classification algorithms were used in these
models. They are: k-nearest neighbors (KNN), support vector
machines (SVM), and artificial neural network (ANN).

K-Nearest Neighbors (KNN) classifier

KNN algorithm [5, 6] estimates how likely a data point
belongs to a certain group based on what group its k nearest
neighbors are in, where k is an integer value specified by the
user. Each data point is weighted by the inverse of its Euclidean
distance from its nearest neighbors. The optimal k is computed
iteratively and the k value that give the lowest misclassification
errors over the training dataset is selected. A grid-search routine
was used to determine the optimal k value. KNN was
implemented via the Python Scikit-Learn [7] library class,
KNeighborsClassifier.

Support Vector Machine (SVM) classifier

A SVM [5, 8] classifier performs classification by finding
an optimal hyperplane that maximizes the margin between the
two classes. The hyperplane is a linear separator for any
dimension. For nonlinearly-separated classes, a data
transformation by a kernel function would be required. Kernel
is a mathematical function that performs nonlinear
transformation of data so that they can be classified by a linear
hyperplane. In this work, a Gaussian (or radial basis function)
kernel was used. It is a similarity function that measures the
“distance” between a pair of data points and is defined as:

K(x,x") = exp(=Y|lx — x"||*)

where ||x — x'|| is the Euclidean distance between two data
points x and x’. And Y"(gamma) is a parameter that controls the
tradeoff between error due to bias and variance in the model.
Training SVM involves the minimization of the cost (or error)

function [3, 6]:
1 n
Sl +¢ ) &,
k=1

subject to the constraint:
YewTx, +b)>1— & and &, > 0

where w = weight vectors
C = penalty parameter
&, = slack parameters for handling non-separable data
T = transpose (of a matrix)
b = a constant
X, = training data points
¥y = training data class labels

The penalty parameter C is a parameter in the cost function that
controls the tradeoff between misclassification error and
separation margin. Both Y and the C have to be specified. A
grid-search routine was used to determine the combination of ¥
and C that gave the lowest misclassification error. SVM was
implemented via the Python Scikit-Learn library class, SVC.

Artificial Neural Network (ANN) classifier

ANN [5], sometimes called multiplayer perception, is a
machine learning algorithm that attempts to mimic how the
human brain processes information. An ANN is organized into
input, hidden, and output layers. The hidden layer is composed
of ‘neurons’, which process input variables and output the
response variables, using activation functions. For this work,
ANN consisted of one input layer, one hidden layer, and one
output layer. A hyperbolic tangent (tanh) function was used for
the activation functions in the hidden layer, defined as:

1— e
1+e2x

where x = weighted sum of input engine parameters

tanh(x) =

A grid-search routine was used to determine the regularization
parameter (o) and the number of ‘neurons’ (Ne) in the hidden
layer that gave the lowest misclassification error. ANN was
implemented via the Python Scikit-Learn library class,
MLPClassifier.

ENGINE DATABASE

The basic engine architecture in this study was an axial-
compressor turbofan. The engine database consisted of 139
manufactured engines [9 to 15] and 61 engines that were
studied previously in various NASA aeronautics projects. The
NASA engine data were the system-study results for various
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NASA aeronautics projects [16 to 22]. The engine database is
shown in Appendix A.

PREDICTIVE MODELS

Both 2-class and 3-class models were developed to predict
engine core sizes in terms of classes, using the three machine
learning algorithms described in the previous section. Core
sizes of all the manufactured engines were assumed to be 0.5
inch or larger. For the NASA engines, core sizes were classified
according to the blade-height data obtained from the system
studies. Python programming language was used to develop
both models.

Input engine parameters for both predictive models are:

e OPR at sea level static condition
e BPR at sea level static condition
e Sea level take-off thrust

The sea-level flight condition was chosen, to be consistent with
the engine database (Appendix A). The database was built
based on publicly-available engine data.

The output is:

e Engine core size class label: 0, 1, or 2

2-class predictive model

This is a binary classification problem in machine learning.
For this model, the engine core sizes were categorized into two
classes: 0 and 1 (correspond to acceptable and unacceptable
core sizes), according to the engine core size (h), as shown in
Table 1.

Table 1 — Categories of the 2-class model

Two Classes
0 1
(acceptable) (unacceptable)
h=050" h<0.50"

Training and building the predictive models involved three
steps: dataset preparation, preliminary training and cross-
validation of the models, and building, training, and evaluation
of the final model

e Dataset preparation

The engine dataset was shuffled randomly (using pseudo-
random number generator) and divided into two datasets: the
training set and the testing set. The training set was used to train,
cross-validate, and build predictive models. The testing set
consisted of the remaining engines that were unseen by the
predictive models, and was held out for the final evaluation of
the predictive models. The training-testing dataset split is
depicted in Table 2.

e  Preliminary training and cross-validation of the models
During preliminary training, three predictive 2-class models
were developed using KNN, SVM, and ANN algorithms,
respectively. This was done to identify the algorithm with the
best accuracy for training a classifier to distinguish acceptable
and unacceptable core sizes. The algorithm with the best
performance was then selected to build and final-train the
predictive model.

Table 2 - Training-Testing dataset split for the 2-class model

. Training dataset Testing dataset
Core size . .
(no. of engines) (no. of engines)
h>0.5" 116 38
h<0.5" 34 12
Total 150 50

Within the training dataset (150 engines), a five-fold cross-
validation procedure was used to conduct a preliminary
evaluation and to fine-tune the models. The training dataset was
randomly split into 5 groups: 4 groups were used to train the
models and 1 group was used to cross-validate the models. This
process was repeated 5 times so that each of the 5 groups got
the chance to be used for training and validation. The
performance measure was then the average of the values, in
terms of the means and standard deviation, computed in the
iteration loop.

e Building, training, and evaluation of the final model

The best algorithm is identified in the previous step was
used to build and train the final predictive model. Cross-
validation was no longer needed for this step, i.e., all 150 engine
data were used to build and train the predictive model. The
model was then used to predict the core sizes of the engines in
the testing dataset (50 engines), and the results were compared
with the testing dataset.

3-class predictive model

In this model, the engine core sizes were categorized into
three classes: 0, 1, and 2 (correspond to acceptable, acceptable
with improved manufacturing technologies, and unacceptable,
core sizes) according to the engine core size (h), as shown in
Table 3. The training-testing dataset split is depicted in Table 4.

Table 3 — Categories of the 3-class model

Three Classes

0 1 2
(acceptable) (acceptable with improved (unacceptable)
manufacturing technologies)

h=0.50" 0.5">h>041" h<041"
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Table 4 - Training-Testing dataset split for the 3-class model

. Training dataset Testing dataset
Core size . .
(no. of engines) (no. of engines)
h>0.5" 116 38
0.5">h>041" 17 6
h<0.41” 17 6
Total 150 50

Similar to the 2-class model, the testing dataset consisted
of the 50 engine that were unseen by the predictive models, and
was held out for final evaluation of the predictive tools. Dataset
preparation, model building, training, and evaluation
procedures were similar to those for the 2-class model.

PREDICTIVE RESULTS
2-class predictive model

For this model, the training dataset consisted of 116
engines with 2 > 0.5” and 34 engines with h < 0.5”. Using a
grid-search routine, the parameters that gave the lowest
misclassification errors for the three algorithms were
determined. They are shown in Table 5.

Table 5 — Algorithms used and the parameters (2-class model)

Algorithms Parameters
KNN k=4
SVM C=10,Y=20
ANN a=0.001, N.= 2.0

The classification accuracy of the machine learning algorithms
was defined as the number of correct predictions made as a
percentage of all predictions made. And uncertainty was
defined at 95% confidence interval, i.e. two standard deviations
for normal data distribution. The preliminary training and cross-
validation results are shown in Table 6.

Table 6 - Cross-validation results (2-class model)

Uncertainty
Algorithms Accuracy 95% confidence interval
(mean) (+ 2 standard deviation)
KNN 96% +7%
SVM 98% +5%
ANN 97% +7%

They show that SVM had the best accuracy and the lowest
uncertainty. So, it was selected to build and final-train the
predictive model.

The final predictive model, built with SVM algorithm, was
then used to predict the engine core sizes in the testing dataset
(the 50 engines unseen by the model). Performance metrics for
final model evaluation are:

e overall engine core-size prediction accuracy
e unacceptable engine core-size (h < 0.5”) prediction
accuracy

To be able to predict unacceptable engine core-size is the main
objective of the predictive tool. The results are shown in Table
7.

Table 7 - Final test results of the 2-class model

Core size No. of engines No. of engines Accurac
(Data) (Prediction) Y
h>0.5" 38 38 100%
h <0.5" 12 11 92%
Overall 50 49 98%

Overall, the 2-class model had an accuracy of 98%, with an
uncertainty of 5%. More importantly, it predicted unacceptable
engine core sizes with 92% accuracy. The results were
compared with the testing dataset in Table 8. It shows only one
engine was misclassified.

3-class predictive model

For this model, the training dataset consisted of 116
engines with 2 > 0.5, 17 engines with 0.5” > h > 0.41”, and
17 engines with & < 0.41”. Using a grid-search routine, the
parameters that gave the lowest misclassification errors for the
three algorithms were determined. They are shown in Table 9.

Table 9 — Algorithms used and the parameters (3-class model)

Algorithms Parameters
KNN k=4
SVM C=55Y=05
ANN a=0.002, N, =4

The classification accuracy of the three machine learning
algorithms from the preliminary training and cross-validation
of the predictive models are shown in Table 10.

Table 10 - Cross-validation results (3-class model)

Uncertainty
Algorithms Accuracy 95% confidence
(mean) interval
(£ 2 standard deviation)
KNN 91% +12%
SVM 91% +11%
ANN 91% 7%

The cross-validation results show that the 3-class
predictive models were less accurate than the 2-class model.
This is because of insufficient core-size data to train the model.
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Table 8

Comparison of predicted results with testing dataset — Two-class model

Core size Core size Core size Core size

Org. Engine model Data  Prediction Org. Engine model Data  Prediction
CFMInt'l LEAP-1A3S L ] L MASA ERA Large-DD-2014 L] L ]
MASA ERA Small-DD-2015-V2 Fy A CFM Int'l CFM56-7B22 L ] L ]
NASA AATT ND8-FPR1.5-DOE2 A A MASA ERA Large-DDO-2015-HWB-V2 L L ]
Rolls Royce BR715-C1-30 . ] MASA ERA small-Geared-2014 A A
MNASA AATT smallCore geared A [ ] &« GE GE30-858 ] ]
Rolls Royce Trent XWB-97 ] [ ] Rolls Royce BR715-A1-30 ] ]
RollsRoyce AE3007A [ ] [ ] GE GEnx-1B70/P2 [ ] ]
GE CF34-8C1 L L] GE CF5-30C2B1 L ] L
RollsRoyce Trent 1000-G3 L] L MASA AATT MDB-FPR1.6-DOEL A A
MNASA SFW SA-FPR1.4-DD-2D Fy A CFM Int'l CFM56-5B3 L ] L ]
RollsRoyce RB211-524C2 . ® MASA ERA Large-Geared-2015-HWB-V2 . .
GE CF34-8E5AZ L L] MNASA ERA Medium-Geared-2015-V2 L ] L
PEW PW44B2 L] L PEW PW 2037 L] L]
GE Genx-1B58/P1 L ] ] MASA AATT TBW W2 A A
MASA SFW SA-FPR1.3-GR-HW-2D A A CFM Int'l CFM5E-7B20 L ] L ]
CFMInt'l CFM356-2C1 L L] PE&W PWa0o74 L ] L
Rolls Royce Trent XWB-84 ] [ ] PEW PW1130G ] ]
RollsRoyce RB211-524D4 L ] L CFM Int'l CFM5E-5A4 L ] L ]
CFM Int'l CFMSB-5B5/P L ] L GE GES0-308 L ] L ]
MNASA SFW 3A-FPR1.4-GR-HW-2D A A CEM Int'l CFM56-7B26 L L ]
MASA ERA small-Geared-2015-V2 A A MASA AATT MDB-FPR1.6-DOE2 A A
RollsRoyce Trent 875 L ] L IAE IAEV2533-A5 L] L ]
RollsRoyce Trent 1000-L3 L ] L] GE CFB-BOAZ L ] L ]
RollsRoyce TrentS72-84 L ] L] GE CFE-80C2A1 L L ]
NASA AATT MNDE DOEZ FPR1.30 A A PEW PW 4084 L ] L

® h>0.50" A h<050” < misclassification
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The 3-class model is more complex and requires more data for
training. The three algorithms show the same accuracy;
however, the ANN algorithm had the lowest uncertainty. The
final predictive model, built with ANN algorithm, was then
used to predict the core sizes of the engines in the testing dataset
(the 50 engines unseen by the model). By using the same
metrics as that for the 2-class model, the overall results are
summarized in Table 11.

Table 11 - Final test results of the 3-class model

Core size No. of engines No. of .en.gines Accuracy
(Data) (Prediction)
h=0.5" 38 38 100%
0.5">h>0.41" 6 5 83%
h<0.41” 6 4 67%
Overall 50 47 94%

Overall, the 3-class model using the ANN algorithm has an
accuracy of 94%, with 7% uncertainty. Its prediction accuracy
for undesirable engine core sizes (2 < 0.5”) is 75% (average of
83% and 67%). The results are compared with the testing
dataset, in Table 12. It shows three engines were misclassified.
Comparing to the 2-class predictive model, the 3-class
predictive model is less accurate because of insufficient training
data. As shown in Table 4, there were only 17 engines with
0.5”>h > 0.41" and 17 engines with /& < 0.41” available for
training.

CONCLUSIONS

Machine-learning predictive models were developed for
turbofan engine core-size prediction, using the database of two
hundred manufactured engines and engines that were studied
previously in NASA aeronautics projects. The 2-class
predictive model is very accurate; it has an overall accuracy of
98%, with 5% uncertainty. And it predicted unacceptable
engine core sizes with 92% accuracy. The 3-class predictive
model has an overall accuracy of 94%, with 7% uncertainty. It
predicts undesirable engine core sizes with 75% accuracy.

To further improve the accuracy (and reduce the
uncertainty) of the 3-class predictive model, the database needs
to be expanded. The 3-class model is more complex and
requires more data for training. However, the limitation of
publicly available engine data is a challenge to overcome.
Overall, the results show that by bringing together sufficient
(big) high quality data, robust machine-learning algorithms and
automation, machine-learning-based predictive model can be
an effective tool for engine core-size prediction, which would
facilitate engine core architecture selection in the early stages
of engine development. The promising results of this first study
paves the way for further exploration of the use of machine
learning for aircraft engine preliminary design.
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Table 12

Comparison of predicted results with testing dataset — Three-class model

Core size Core size Core size Core size
Org. Engine model Data  Prediction Org. Engine model Data  Prediction
GE CFE-80A2 L ] L ] GE Genx-1B75/P2 L L
MASA AATT NDB-FPR1.3-DOE3 A e PEW PW4156 L] L]
Rolls Royce Trent 1000-CE3 ] ] Rolls Royce Trent 875 ] ]
GE CF5-BOELAZ L L NASA AATT STARC-ABL-2017
CFM Int'l CFMS6-5BR/P L ] L ] MASA ERA Small-Geared-2015-V2
MASA ERA Small-DD-2015-V2 A A MASA SFW SA-FPR1.4-DD-2D
Rolls Royce AE3D0T7A ] ] Rolls Royce Trent 1000-R3 ] ]
GE GEnx-1B70/P2 L ] L ] MNASA AATT NDE-FPR1.4-DOE3
NASA SFW 5A-FPR1.6-GR-HW-2E L ] e CEM Int'] CFM356-5B3 L L
MNASA SFW 3A-FPR1.6-GR-HW-2D A e RollsRoyce Trent 877 L] L]
MASA ERA Large-Geared-2015-HWB ] ] RollsRoyce BR710-A1-10 [ ] [ ]
GE CFE-80E1AS L ] L ] MASA ERA Large-Geared-2015 & &
GE CF34-3A L L CFM Int'l CFM356-5C4 L L
Rolls Royce TrentXWB-84 L] L] MNASA SFW Simulated GE3C-1108 L ] L ]
MASA AATT ND3-FPR1.5-DOE4 A A GE Genx-1B54/P1 L L
CFM Int'l CFM56-5C2 L ] L ] GE Genx-1B58/P1 L] L
MASA ERA Large-DD-2014 L ] L ] CFM Int'l LEAP-1A26 L L
MASA AATT ND8-FPR1.4-DOEL RollsRoyce Trent 1000-L3 L L
CFM Int'l CFM56-5A3 L ] L] MNASA AATT ND8-FPR1.3-DOE1
Rolls Royce Trent 1000-G3 L] L] CFM Int'l CFM56-5C3 L] L]
CFM Int'l LEAP-1B25 L ] L ] MNASA AATT MDE-FPR1.6-DOE2 A A
CFM Int'l LEAP-1B27 L ] L ] CFM Int'l CFM5B-7B26 L L
Rolls Royce Trent556-61 - - Rolls Royce BR715-C1-30 ® ®
MASA ERA Large-Geared-2014 ] ] RollsRoyce Trent 1000-H3 [ ] [ ]
PEW PW4168-1D L] L] MASA SFW Simulated Genx L] L]
® h>0.50" 0.5”>h >0.41" A h<0.41” & misclassification
7
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Appendix A

Engine database

Thrust, Ibs Thrust, lbs
Org. Engine Model OPR (SLS] BPR (51S]  [Take-off] Core Size Org. Engine Model OPR (515} BPR (5LS]  [Take-off) Core Size
GE CF34-104 26.5 5.4 18250 L] CFM Int'l 56-3B1 2124 5.1 20000 ]
GE CF34-10E 27.3 5.09 18820 ] CFM Int'l 56-3B2 255 51 23500 ]
GE CF34-3A 19.7 6.25 9220 ] CFM Int'l 56-3C1 255 51 23500 ]
GE CF34-8C1 23.03 5.13 12670 L] CFM Int'l 56-5A1 26.6 & 25000 ]
GE CF34-8C5 23.09 5.13 13358 ] CFM Int'l 56-5A3 26.6 & 25000 ]
GE CF34-8ESAZ 2482 513 14500 ] CFM Int'l 56-5A4 238 6 22000 ]
GE CFG-80A 29 5 43000 L] CFM Int'l 56-5A5 251 & 23500 ]
GE CF5-BOAZ 301 5 50000 ] CFM Int'l 56-5B1 302 57 30000 ]
GE CFE-80C2A1 30.96 51 58000 ] CFM Int'l 56-5B2 313 56 31000 ]
GE CFB-BOCZAS 31.58 51 60100 L] CFM Int'l 56-5B3 32.6 54 33300 ]
GE CFE-80C2A8 31 51 55000 L CFM Int'l 56-5B4 271 59 26500 L]
GE CFEe-80C2B1 30.08 51 56700 ] CFM Int'l 56-5B5/P 23.33 59 22000 ]
GE CF6-80C2B1F 3013 51 57160 L] CFM Int'l 56-5B6/P 24.64 & 23500 ]
GE CFEB-BOC2B4 30.36 51 57180 L CFM Int'l 56-5C2 28.8 6.8 31200 L]
GE CFE-80C2BG 3156 51 60070 ] CFM Int'l 56-5C3 2998 6.7 32500 ]
GE CFG-B0EL1AZ 331 51 68240 ] CFM Int'l 56-5C4 31.15 6.6 34000 ]
GE CFE-BOE1AS 357 51 68520 L CFM Int'l 56-7B20 2261 54 20600 L]
GE CFE-BOE1AL 345 51 66870 ] CFM Int'l 56-7B22 2441 53 22700 ]
GE 90-115B 4224 7.08 115500 ] CFM Int'l 56-7824 25.78 5.2 24200 ]
GE S0-76B 3545 8.6 79654 L CFM Int'l 56-7B26 2761 51 26400 L]
GE S90-85B 38.37 344 87315 ] CFM Int'l 56-7B27 28.63 5 28900 ]
GE 90-90B 39.7 8.4 54000 ] CFM Int'l LEAP-1AZE6 334 111 27112 ]
GE 90-94B 40.82 8.33 96870 L CFM Int'l LEAP-1A35 38.6 10.7 32170 L]
GE Genx-1B54/P1 351 9.4 57400 L] CFM Int'l LEAP-1B25 38.4 8.4 26797 ]
GE Genx-1B58/P1 371 9.2 60991 ] CFM Int'l LEAP-1B27 399 8.5 28034 ]
GE Genx-1B64/P1 40.5 9 66993 L CFM Int'l LEAP-1B28 415 8.6 29315 L]
GE Genx-1B67/P1 419 8.9 69399 L] Engine Alliance GP7270 36.62 8.71 74724 ]
GE GEnx-1B70/P2 43.9 8.8 72300 ] IAE W2500-A1 29.8 5.3 25000 ]
GE GEnx-1B74/75 46.4 8.7 76705 ] IAE W2522-A5 257 419 23043 ]
GE Genx-1B75/P2 47 8.6 77604 L] IAE W2524-A5 269 4.81 24518 L]
GE GEnx-1B76/P2 47.5 8.6 78503 ] IAE W2525-D5 27.2 4.82 25000 ]
GE Genx-2B&7 43.6 8 67400 ] IAE W2527-A5 27.2 482 25000 ]
CFM Int'l 56-2C1 23.5 [ 22000 L] IAE W2528-D5 30 4.66 28000 L]
® h2>0.50" 0.5”>h>0.41" A h=<041”
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Appendix A (cont’d)

Engine database

Thrust, lbs Thrust, lbs

Org. Engine Model OPR (SLS) BPR (515]  [Take-off] CoreSize Org. Engine Model OPR (SLS) BPR (515} [Take-offi  CoreSize

IAE W2530-A5 32 4.6 29500 L] PEW 1525G 387 111 24392 L

IAE W2533-A5 33.44 4.46 31600 ] Rolls-Royce RB211-228-02 247 4.7 42000 L]
PEW ITSD-20 203 52 46300 ] Rolls-Royce RB211-5248-02 29 4.4 50000 L]
PEW ITSD-59A 245 4.9 53000 L] Rolls-Royce RB211-524C2 281 45 50500 L]
PEW Imsp-7 22.2 5.15 46300 L] Rolls-Royce RB211-524D4 29.7 4.3 52000 L
PEW ITSD-7A 203 5.1 46950 L] Rolls-Royce RB211-524G 321 4.25 56900 L
PEW ITSD-7F 228 51 43000 L] Rolls-Royce RB211-524H 34 4.2 55400 L
PEW T8D-71 235 51 50000 L] Rolls-Royce RB211-535C 215 45 36700 L]
PEW TeD-700 245 49 53000 ] Rolls-Royce RB211-535E4 254 41 39600 L]
PEW ITSD-7R4E 24.2 5 50000 L] Rolls-Royce Trent 1000-A 9.47 41 70000 L]
PEW ITSD-7RAG2 268.3 4.8 54750 L] Rolls-Royce Trent 1000-AE3 9 43 69893 L
PEW 2037 269 2.04 37600 L] Rolls-Royce Trent 1000-CE3 9 45.8 75244 L
PEW 2040 2894 554 40900 ] Rolls-Royce Trent 1000-G3 91 445 72771 L]
PEW 4052 26.32 5 52200 L] Rolls-Royce Trent 1000-H3 93 401 54543 L]
PEW 4056 293 47 56750 ] Rolls-Royce Trent1000-13 47 .8 89 78885 L]
PEW 4060 31.4 4.5 60000 L] Rolls-Royce Trent 1000-L3 45.8 9 75244 L]
PEW 4074 32.2 6.8 74500 L] Rolls-Royce Trent 1000-M3 48.7 8.9 80504 L
PEW 4077 33.2 6.7 77000 L] Rolls-Royce Trent 1000-P3 458 9 75244 L]
PEW 4084 36.2 6.4 84000 ] Rolls-Royce Trent 1000-R3 454 89 81810 L]
PEW 4050 39.16 6.1 90200 L] Rolls-Royce Trent553-61 3519 7.5 56620 L]
PEW 40598 41.37 5.8 95340 L] Rolls-Royce Trent556-61 36.7 7.5 56620 L]
PEW 4152 269 4.9 52200 L] Rolls-Royce Trent 7000-72 45.4 9 73700 L]
PEW 4156 283 4.3 56750 L] Rolls-Royce Trent 7638 34 5.15 68400 L
PEW 4164 31.24 52 64000 L] Rolls-Royce Trent772 358 5.03 71000 L]
PEW 4168-10 331 4492 63600 ] Rolls-Royce Trent875 3542 6.08 79100 L]
PEW 4480 30.68 47 60000 ] Rolls-Royce Trent877 36.3 6.02 81300 L]
PEW 4452 3151 4.6 63300 L] Rolls-Royce Trent884-17 38.96 5.95 87700 L]
PEW 1122G 28.8 127 24234 L] Rolls-Royce Trent892-17 41.38 57 92500 L]
PEW 1127G 317 12.3 27000 L] Rolls-Royce Trent895 41.52 5.7 92900 L
PEW 1128G 34 12 29248 L] Rolls-Royce Trent970-84 38 85 76143 L]
PEW 1130G 381 116 33114 L] Rolls-Royce Trent970B-84 394 5.4 79335 L]
PEW 1518G 323 116 19800 ] Rolls-Royce Trent972-84 38.7 84 77761 L]
PEW 1521G 351 114 21564 L] Rolls-Royce TrentXWB-75 36.8 9.3 75086 L]

® h20.50" 0.5”>h>0.41" A h<0.41”
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Appendix A (cont’d)

Engine database

Thrust, [bs Thrust, lbs
Orge. Engine Model OPR (SLS) BPR (5L5]  (Take-off) CoreSize Org. Engine Model OPR (SLS) BPR (5L5]  (Take-off] CoreSize
Rolls-Royee TrentXWB-79 38.8 9.2 79852 L ] MNASA ERA Medium-Geared-2015 38.4 239 45829 L ]
Rolls-Raoyce TrentXWB-84 411 9 85200 L] MASA ERA Medium-Geared-2015-V2 38.5 24.8 45799 L]
Rolls-Raoyce TrentXWEB-97 48.5 8 93200 ] MASA ERA Small-DD-2014 29.7 9.8 15566 A
Rolls-Royee BR710-A 2423 4.2 14750 L ] MNASA ERA Small-DD-2015 287 9.9 14647 A
Rolls-Raoyce BR715-A 28.98 4.66 153920 L] MASA ERA Small-DD-2015-V2 28.7 10 14686 A
Rolls-Raoyce BR715-C 32.15 4.55 21430 ] MASA ERA Small-Geared-2014 282 247 24887
RollsRoyce AE3007A 18.08 523 7580 L ] MASA ERA small-Geared-2015 24.6 27 21525
NASA SFW 50-pax 37.2 112 5825 A MNASA ERA Small-Geared-2015-V2 248 274 21553
MNASA SFW Simulated Genx 41.4 9.2 63800 ] MASA AATT M3CC-2016 316 17.6 18830
MNASA SFW Simulated GE90-1108 42 7.2 110000 ] MASA AATT M3CC-2017 369 17.3 21515
MNASA SFW UHB 447 18.8 36833 L] MASA AATT N3CC-2018 36.7 216 21662 A
MASA SFW SA-FPR1.3-GR-HW-2E 32.3 26 28358 MASA AATT STABL-2017 18 157 12139
MNASA SFW SA-FPR1.4-GR-HW-2E 338 18 26575 MASA AATT STARC-ABL-2017 3473 128 21954
MNASA SFW SA-FPR1.5-GR-HW-2E 354 121 24686 MASA AATT STARC-ABL-2018 339 15 16872 A
MNASA SFW 3A-FPR1.6-GR-HW-2E 36.3 9.9 24262 MASA AATT MND8-FPR1.3-DOEL 28.5 28.2 25633
MASA SFW SA-FPR1.7-DD-LW-2ZE 376 85 23889 ] MASA AATT MDB-FPR1.3-DOE2 26.4 333 25633
MNASA SFW SA-FPR1.4-DD-2D 331 184 23813 A MASA AATT MDB-FPR1.3-DOES 325 289 28196 A
MNASA SFW 3A-FPR1.3-DD-2D 33.8 15 23370 A MASA AATT MNDB-FPR1.4-DOEL 28.8 259 25633
NASA SFW SA-FPR1.6-DD-2D 344 127 23046 MASA AATT MNDB-FPR1.4-DOE2Z 34.8 198 25633
MNASA SFW SA-FPR1.7-DD-2D 35 1049 22734 MASA AATT MND8-FPR1.4-DOES 319 23 25633
MNASA SFW SA-FPR1.3-GR-HW-2D 326 241 26343 A MASA AATT MND8-FPR1.4-DOE4L 40.2 194 28196 A
MNASA SFW 5A-FPR1.4-GR-HW-2Dr 338 17.5 245817 A MASA AATT MNDB-FPR1.5-DOEL 37.5 17 25633 A
MASA SFW 54-FPR1.5-GR-HW-2Dr 335 146 23389 A MASA AATT MDB-FPR1.5-DOE2 3438 19.4 25633
MNASA SFW 54-FPR1.6-GR-HW-2Dr 34 124 225924 A MASA AATT MDB-FPR1.5-DOES 286 202 23070
MASA ERA Large-DD-2014 474 16.2 80071 L] MASA AATT MND8-FPR1.5-DOE4 48.6 139 28196 A
MASA ERA Large-DD-2015 43.7 16.5 71792 L] MASA AATT MNDB-FPR1.G-DOEL 33.6 1585 23070 A
MASA ERA Large-DD-2015-HWB-V1 48.8 137 67183 ] MASA AATT MDB-FPR1.6-DOE2 43.2 132 25633 A
MASA ERA Large-DD-2015-HWB-V2 4849 144 67233 L] MASA AATT MND8-FPR1.6-DOE3 398 151 25633 A
MASA ERA Large-Geared-2014 47.2 224 874906 L] MASA AATT N+3 275 36.6 28620
MNASA ERA Large-Geared-2015 389 247 74149 ] MNASA AATT smallCore geared 388 255 37659
MNASA ERA Large-Geared-2015-HWB 47.2 193 67386 L] MNASA AATT TBW-MDP 23.6 041 17416 A
MASA ERA Large-Geared-2015-HWB-Y2 471 20 67423 L] MASA AATT TBW-hFan 17.3 031 28347 A
NASAERA  Large-Geared-2015-HWB-V3 47.2 20 56172 MASA AATT TBW-V2 19.2 0.36 23045 A
MASA ERA Medium-Geared-2014 447 224 51285 L ] MASA AATT TBW-V3 203 0.34 22242 A

SFW — NASA Subsonic Fixed Wing project ERA — NASA Environmentally Responsible Aviation project AATT — NASA Advanced Air Transport Technology project
® h2050" 0.5”>h>0.41" A h=<0.41”
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